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BoUNDS on the thermoelastic stresses in homogeneous beams of arbitrary cross-section
were derived in [1]. Based on the analysis in [2J, which showed the applicability of elemen­
tary beam theory to fiber reinforced materials, the bounds were extended to composite
beams [3J. Besides their use in design and in estimating errors resulting from uncertainties
in temperatures, the bounds have found application in the calculation of lower bounds on
the effective torsional rigidity of heated beams [4] and in estimating the error from the use
of elementary beam theory in lieu ofan exact thermoelastic formulation [5].

The bounds derived in [3] for a composite beam ofarbitrary cross-section are applicable
only when the following three conditions on the selection of axes are satisfied:

fA y dA := i ZdA := 0

{ Ey dA =: { Ez dA := 0

{ IXETz dALEy2 dA = { (XETy dA { (XEyz dA.

(1)

(2)

(3)

In general it is not possible to satisfy all three conditions because they are not independent.
However, in one case of practical interest, where fine reinforcing fibers are uniformly dis­
tributed throughout the cross section, the bounds in [3] can be used; in that case, equations
(1) and (2) are both satisfied by suitably locating the origin (y = z = 0), and equation (3) is
satisfied by a proper orientation ofthe axes. Complete generality can be attained by omitting
one of the constraints in deriving the bounds. Conditions (1) are omitted in the present work
since this seems to lead to the most convenient form for the results.

Let the origin ofcoordinates be located. according to equation (2) and let the orientation
of the axes y and z be specified by equation (3). In terms of the dimensionless variables
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defined in [3] and shown in Fig. 1, the expression for the axial stress at any point in a cross­
section remains as in [3] :

y

Y2 r
range (3)

p2/Y1 -+range (1)

_p2/Y2 ~
range (2)

l

FIG. 1. Cross section and variables: ,,= Y/Y:; ,= z/Y:; fJ(,,) ... b(y)/y:; p: ="E[/AE; p'2 ,. p:/y~;

71.",0 = 'I = E(",O/E; FJ = fA Ey: dA; AE ... fA EdA.

If the extreme values of the temperature variable in a cross-section are known to be

-tm ~ ,(", () = a.ET ~ t M

it is desired to find bounds on the stress at any point (", () such that

(1m(", ,) ~ at", 0 ~ (1M('" (l.
In addition, the extreme values of the bounds are sought

L ~ (1m('" ()
m

(4)

(5)

(6)

(7)

for each of the materials in the composite, to give bounds on the maximum stress acting on
each material in the section.

The bounds in equation (6) are obtained as in [3] by considering locations" in the three
ranges shown in Fig. 1:

Range 1

- p,2 < '1 < P""!"1 :

(8)



The quantity
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Q' == II '1'P('1') d'1'
-'II
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(9)

is the dimensionless first moment of area of the section about the origin specified by
equation (2). When equation (1) is also satisfied, as was the case in [3], Q' vanishes and
equations (8) together with all subsequent results, reduce to those in [3J.

Range 2
- '11 s: '1 '5. - p'2 :

(1M('1, ,) == ~,(rm+rM) {At - A('1) + p:2 [Q' - Q('1)]} + 'm[1- ri( 1+~: p:2)J (10)

(1m('1,') == - ~,(rm+'M){A'-A('1)+ ;2[Qt-Q('1)]}-rM[1-ri(I+~: p:2)J
where

(11)

(12)

In [3], the maximum value of a bound, equation (7), for anyone material (T i ) could be
determined by evaluation of the bound at the largest value of '1 occupied by that material,
because the bounds were non-decreasing from '1 =: 0 to the extreme fibers. In the present
case, examination of equations (8H12) shows that the bounds do not necessarily reach a
minimum at '1 =: 0 and a general statement on the maximum cannot be made. It will be
necessary to evaluate (1m and (1M for every location '1 occupied by anyone material Ti ;

the extremes of these values will be L... and LM for that material.
The upper bound (1M is illustrated in Figs. 2 and 3, for a rectangular cross section in

which equation (3) specifies axes oriented parallel to the edges. The special case E1 == £1
is used in Fig. 2 to observe differences in the bounds from those in [3] as the distribution of
materials in the section causes the origin of coordinates to shift away from the centroid.
Figure 3shows the dependence ofthe bound on the location ofthe core points. Adependence
on a new parameter
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FIG. 2.

which does not appear in [3] when Q' = 0 is also shown in the figures for representative
values of R,

Although bounds on the maximum stress for each material cannot be determined
simply by evaluating the bounds at the largest 1,,1 occupied by the material, as was the case
in [3], a conservative bound can still be found as in [3] by noting that aM and a... reach a
maximum (in magnitude) at one of the extreme fibers. For (1f,f' this is observed in Figs. 2
and 3. and it can be deduced in general from the following equation and inequalities on the
function (J"'<tt. () :

a'-(Ju fJ(p''-/rO P''-
0112 = -rlt'",+'t",) A' rt3 ~ 0,

i]2(JM f3( - p'll,,) p''-
ort2 == rj(t'm +t'M) A' ,,3;;:: 0,

(13)
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c, : core points for El =~EI
C2 core points for Ei =EI

FIG. 3.
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(14)

Conservative bounds are therefore given by evaluatingequations (10)and (12) at the extreme
fibers even though a material 'j may not occupy that location:

L = max[aM(-yl' z), aM6'2'z)]
M

...

(15)

(16)

where Aj,y;, Qj take on the values Al' -Yl' Ql or A2'Y2' Q2' The Ai are the areas from a
core point to an extreme fiber as defined hi [3] and the Qj are defined by

Ql = [Q' -Q( -'1J)]Y~

Q2 = Q(11 = l)y~.

In [1], a beam column analogy was described to evaluate the expressions corresponding
to equations (15) and in [3] a similar analoSLwas"'presented to determine the conservative
bounds in equation (15) for the special case EI = EI. Extension ofthe analogy to cover the
present case is of questionable value, however, because of the additional terms present
when Q'::I: O.
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